
A Python Replication of VR-PCA Algorithm

Ziyu Wang

8 December 2021

The Oden Institute for Computational Engineering Science
The University of Texas at Austin

1 Abstract

In this project, I reproduced the Variance-reduction Principal Component Analysis (VR-PCA) algorithm
that was described in Shamir’s paper using Python. The code replicates the algorithms for two cases.
And the project uses simulated matrices to evaluate the performance of the model based on the number
of data being passed in. At the end of this project, I compared the results with the paper.

2 Introduction

To begin with, the principal component analysis is a frequently used feature extraction method in data
analytics and machine learning problems that deal with large dimensional data sets. Given a large data
set with n instances (rows) and d features (columns), PCA involves the idea of finding the k-dimensional
subspace (d > k) which can project the largest variance in the data set. There are two main types for
PCA algorithms, streaming and non-streaming. The article from Yang et al.[5] proposed a streaming
PCA algorithm, History PCA, which is designed to solve the memory issue when dealing with large scale
data. And Shamir [2][4] discussed a non-streaming algorithm called variance-reduction PCA (VR-PCA),
which is the algorithm that I’ll be replicating with.

The replication of VR-PCA algorithm is conducted under a non-streaming setting. Given a data set
matrix X ∈ Rd×n, our goal is to find the top k left singular vectors (k ≪ d) W . This can be rephrased
into finding the solution to the following equation, where ∥ · ∥F denotes the Frobenius norm1,

max
W∈Rd×k:W⊤W=I

1

n
∥X⊤W∥2F (1)

Based on Shamir’s articles [2], this problem setting is equivalent to finding the top k eigenvector(s) of
the covariance matrix A = 1

nXX⊤. The first case of this project corresponds to finding only the top
eigenvector, i.e., k = 1, and the second case is a generalization of such.

For k = 1, the VR-PCA algorithm is split into s epochs, in each of which we perform a power iter-
ation2 with respect to the covariance matrix A. And then we conduct m stochastic updates. In each
stochastic update, the algorithm uses xit , a randomly sampled column of the matrix to “interlace with
occasional exact power iterations” [4]. This step will help reduce the variance of the updates and lead to
a converging result.

For the generalized case, there are several noticeable differences in the algorithm. First, we are us-
ing an initial d × k matrix with orthonormal columns instead of the unit vector. And in the stochastic
updates, we replaced the vectors by matrices and the vector normalization is replaced by a matrix orthog-
onalization. A new k×k orthogonal matrix is also being introduced to perform a unitary transformation
for the stochastic updates.

Both algorithms are provided below based on Shamir’s article [4].

1The Frobenius norm for a matrix Am×n is defined as the square root of the sum of absolute squares of its items:

∥A∥F =
√∑m

i=1

∑n
j=1 |aij |2

2Power iteration is used for large-scale data/matrix, when the standard eigendecomposition is not feasible. This step is
shown as the calculation of ũ or Ũ in the algorithms.

1

Algorithm 1 VR-PCA, k = 1
Parameters: step size η, epoch length m
Input: Data matrix X = (x1, ...,xn); Initial unit vector w̃0

for s = 1, 2, ... do
ũ = 1

n

∑n
i=1 xi(x

⊤
i w̃s−1)

w0 = w̃s−1

for t = 1, 2, ...,m do
Pick it ∈ {1, ..., n} uniformly
w′

t = wt−1 + η(xit(x
⊤
it
wt−1 − x⊤

it
w̃s−1) + ũ)

wt =
1

∥w′
t∥
w′

t

end for
w̃s = wm

end for

Algorithm 2 VR-PCA, k > 1
Parameters: Rank k, Step size η, epoch length m
Input: Data matrix X = (x1, ...,xn); Initial d× k matrix W̃0

for s = 1, 2, ... do
Ũ = 1

n

∑n
i=1 xi(x

⊤
i W̃s−1)

W0 = W̃s−1

for t = 1, 2, ...,m do
Bt−1 = V U⊤, where USV ⊤ is an SVD decomposition of W⊤

t−1W̃s−1

Pick it ∈ {1, ..., n} uniformly
W ′

t = Wt−1 + η(xit(x
⊤
it
Wt−1 − x⊤

it
W̃s−1Bt−1) + ŨBt−1)

Wt = W ′
t (W

′⊤
t W ′

t)
−1/2

end for
W̃s = Wm

end for

3 Method

First of all, to simplify and optimize the algorithm runtime, I used a simulated matrix instead of a
real-world data set. Due to memory limitation, instead of constructing a 200000× 10000 data matrix as
stated in Shamir’s paper, I reduced the dimension into a 500× 100 matrix for k = 1 case and a 250× 50
matrix for k > 1 cases. The other parameters maintain the same logic as Shamir’s discussion [2]. The
epoch length m is set to be equal to the number of instances (rows) n, and the step size η is set to be
η = 1

r̄
√
n
, where r̄ = 1

n

∑n
i=1 ∥xi∥2.

There are several parameters that need to be covered in the discussion. In Shamir’s experiment, there
is an assumption of eigengap λ3, which is the difference between two successive eigenvalues. We use this
assumption in the creation of matrices. In this replication, there are 5 different eigengap choices, stored
in an array. To use these eigengaps in creating the matrix, we first need to construct a d × d diagonal

matrix D with diagonals (1, 1− λ, 1− 1.1λ, . . . , 1− 1.4λ, q1, q2,. . .), where qi =
|gi|
d and each gi is chosen

according to a standard Gaussian distribution. Then we create two random orthogonal matrices Ud×d

and Vn×d to form data matrix X, where X = UDV ⊤.

Based on the matrix X, the python function then is designed to extract the first (top left) eigenvec-
tor by simply selecting the first column of U , as shown in Figure 1. By adding a random noise vector
and normalize it, we get the initial unit vector w̃0 that can be passed into the VR-PCA algorithm.

The replication of the algorithm takes all the parameters specified in the pseudocode and runs with
a fixed number of loops. As shown in Figure 2, at the end of each loop, I calculated the log error to mea-
sure the performance of this algorithm. The error is calculated by the following equation from Shamir’s
paper [2], where w is the vector we have obtained so far,

log10(1−
∥X⊤w∥2

max
v:∥v=1∥

∥X⊤v∥2
) (2)

3Shamir also discussed the different scenarios of the convergence rate with and without an eigengap assumption. Such
discussion can be found in another paper [3].

2

Figure 1: Matrix formation, k=1

Figure 2: VR-PCA, k = 1

With this algorithm, I then ran the experiment with several different eigengap values with the number
of loops being 60. The following plot shows the result where x-axis measures the number of loops and
the y-axis measures the log error calculated from the Eq. (2).

Figure 3: Reproduced result

This plot shows that as more data being passed in and updating the algorithm, the log error is mono-
tonically decreasing. And the decreasing rate varies across different eigengap values. Based on this result,
the smaller λ is, the slower the error decreases, and the slower the algorithm converges. It is noticeable
that since the scale of error is in logarithmic, the convergence rate is in fact exponential for λ = 0.16,
0.05, and 0.016 but sub-exponential for the other two.

3

Now we move on to the replication of VR-PCA algorithm under k > 1 cases. The matrix formation
function would be very similar with a few nuances. As shown in Figure 3, instead of getting the first
eigenvector, we need a d × k matrix of all top k eigenvectors as the initial matrix. We use a similar
approach as the previous algorithm by extracting the first k columns of U because the columns of U
are the eigenvectors corresponding to each eigenvalue of X in descending order. Another change is that
instead of normalization, we orthonormalized the new d × k matrix W̃0 to ensure that its columns are
orthogonal to each other. The orthonormalization function is provided below as well4.

Figure 4: Matrix formation, k > 1

Figure 5: Orthonormalization

After forming all necessary parameters, we can pass them into the VR-PCA algorithm for k > 1 cases.
The majority of this algorithm is similar to the previous case; but we are using a “block version”, as
stated in Shamir’s paper [2]. In k > 1 cases (Figure 6), the algorithm uses a unitary transformation in
the stochastic update calculation for Ũ and W̃s−1). Such transformation is done by introducing a k × k
orthogonal matrix Bt−1 = V U⊤, as described in the pseudocode above. Then the normalization from
Algorithm 1 is replaced by an orthogonalization, finding the product of W ′

t and the inverse square root
of W

′⊤
t W ′

t . The algorithm of finding the inverse square root5 is shown in Figure 5. After each loop, we
evaluate the performance of the current iteration with the following equation,

log10(1−
∥X⊤W∥2F

max
V :∥V ⊤V=I∥

∥X⊤V ∥2F
) (3)

Figure 6: Inverse square root of a square matrix

4The orthonormalization algorithm is based on Gram-Schmidt process [1].
5To find the inverse square root of a square matrix A, we first need to determine a matrix V and a diagonal matrix D

such that A = V DV −1. The diagonals of D should be the eigenvalues of A in descending order and V is the eigenvectors.
Then A−1/2 = V D−1/2V −1 where D−1/2 is simply raising every diagonal entry of D to the power of -1/2.

4

Figure 7: VR-PCA, k > 1

Again, similar to the k = 1 case discussed above, we then ran this algorithm with five pre-determined
eigen gap values and a fixed 60 loops. The following plots show the relationship between log errors and
number of data passed in, with k = 3, k = 5, and Eq. (3). However, the results look very different from
expectation as they seem to be moving up and down in a zigzag matter (Figure 7). Such result means that
the algorithm does not converge but rather fluctuate around a certain value, which does not align with
the theory from the paper [2][4]. It is also noticeable that when I skip the unitary transformation step6,
the results of log error change dramatically and start to display a monotonically decreasing relationship,
as shown in Figure 8.

Such result is unexpected and will need further exploration. A possible reason for such result is a
coding error while replicating the algorithm. The error is likely to be occurred in either the creation
of Bt−1 or the calculation of inverse square root of W

′⊤
t W ′

t . But the debugging process so far remains
fruitless.

Figure 8: Result of VR-PCA, k = 3 and k = 5

6In the stochastic update step when calculating W ′
t , the algorithm is changed into the following,

W ′
t = Wt−1 + η(xit (x

⊤
it
Wt−1 − x⊤

it
W̃s−1) + Ũ)

5

Figure 9: Result when excluding unitary transformation

4 Conclusion

In this paper, I tried to replicate a new principal component analysis algorithm, VR-PCA, that was intro-
duced from Shamir’s papers using Python. The script uses the VR-PCA algorithms proposed by Shamir
and tried to show a similar result. For k = 1 case, the project successfully produced a similar result
using a much smaller simulated data matrix. For the k > 1 case, the original paper provided an example
for MNIST and CCAT datasets instead of a simulated data. But the result I produced did not look like
Shamir’s even qualitatively, which implies a need for debugging. And since the result changes drasti-
cally after I removed part of the code, the replicated algorithm needs further cross-check and examination.

Overall, I personally learn and understand a lot more about principal component analysis and how
it would be useful in machine learning, data visualization, and data analytics. The replication process
also helped me to understand the logic and principles for this newly introduced VR-PCA algorithm.
Although there are lots of professional theorems and concepts that I have not fully understood from the
articles, this project gave me a productive start on how to work on an individual research project.

Acknowledgement
This research paper is for the course CSE 370: Individual Research, a requirement for the Computational
Science and Engineering Certificate by Oden Institute at the University of Texas at Austin. I want to
thank Dr. Bui for overseeing this project and Van Hai Nguyen for providing a MATLAB template to
start with this project.

References

[1] “Gram–Schmidt Process.” Wikipedia, Wikimedia Foundation, 8 Sept 2021,
https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt process#The Gram%E2%80%93Schmidt process.

[2] Shamir, O. A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate. arXiv:
1409.2848, 2015.

[3] Shamir, O. Convergence of Stochastic Gradient Descent for PCA. arXiv: 1509.09002, 2016.

[4] Shamir, O. Fast Stochastic Algorithms for SVD and PCA: Convergence Properties and Convexity.
arXiv: 1507.08788, 2015.

[5] Yang, P., Hsieh, C., Wang, J. History PCA: A New Algorithm for Streaming PCA. arXiv: 1802.05447,
2018.

6

